





Co-financed project CB 241 "Advanced traffic management on the E67 transport corridor" (SMART E67) under INTERREG Central Baltic Sea Region Programme 2014-2020

Study on the effectiveness and on the improvements of the Central Baltic transport Project "Smart E67"

**Ex-Ante and Ex-Post evaluation** 

Part II

2019











# Co-financed project CB 241 "Advanced traffic management on the E67 transport corridor" (SMART E67) under INTERREG Central Baltic Sea Region Programme 2014-2020

Study on the effectiveness and on the improvements of the Central Baltic transport Project "Smart E67" Ex-Ante and Ex-Post evaluation, Part II

| Client                                  | Estonian Road Administration Latvian State Roads Ltd                                                                        |                                                                                                                        |  |  |  |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Client<br>representative and<br>contact | Kristjan Duubas<br><u>kristjan.duubas@mnt.ee</u><br>Pärnu mnt 463a<br>10916 Tallinn, Estonia<br>Phone: + 372 503 4639       | Boriss Jelisejevs<br><u>boriss.jelisejevs@lvceli.lv</u><br>Gogolja 3<br>LV-1050 Riga, Latvia<br>Phone: + 371 283 54313 |  |  |  |
| Contract                                | signed on June 30, 2016                                                                                                     |                                                                                                                        |  |  |  |
| Report date                             | July 12, 2019                                                                                                               |                                                                                                                        |  |  |  |
| Report no                               | ERC/9/2019                                                                                                                  |                                                                                                                        |  |  |  |
| Keywords                                | Traffic safety, travel time, acciden performance measurement, ITS, e                                                        | ts, emissions, E67 Via Baltica,<br>ex-poste evaluation                                                                 |  |  |  |
| Consultants                             | Tiit Kaal<br>consultant, ERC Consulting Ltd<br>Luule Kaal<br>consultant, ERC Consulting Ltd                                 |                                                                                                                        |  |  |  |
|                                         | ERC Consulting Ltd<br>Väike-Ameerika 15-9<br>10129 Tallinn, Eesti<br>e-mail: info@ercc.ee<br>tel: +372526984<br>www.ercc.ee |                                                                                                                        |  |  |  |



## FOREWORD

SMART E67 project aims to increase the efficiency and safety of passenger and cargo mobility in the Central Baltic region. The project introduced elements of Intelligent Transport System (ITS) adding information and communication technology to E67 transport corridor – a key transport corridor in Estonia and Latvia (North-South direction) covering 202 km in Latvia and 192 km in Estonia.

The overall objective of this study is to evaluate the project "Smart E67" performance results, to measure the before situation and to investigate possible changes after implementation of new technological ITS measures. The list of performance results includes travel time savings, accidents cost savings from improved traffic safety and reduction of vehicle emissions.

The specific objectives of this study are:

- to carry out an Ex-Ante and Ex-Post evaluation of the project Smart E67 actions;
- to find the main impacts of its deliverables to traffic efficiency, road safety and vehicle emission;
- to find suitable methodological approach to carry out abovementioned evaluations, based on existing data delivered by the Client or reachable from open data sources.

Introduction of ITS equipment to E67 Via Baltica route has had an expected impact to total travel time of passengers and cargos by reducing it 0,57% compared to the previous situation. Installation of ITS equipment is also expected to improve traffic safety since road users are more operatively and accurately informed about the road and pavement condition. However, the change in the situation with regard to road safety is estimated. Longer-term monitoring of the situation on Via Baltica route sections is needed to obtain data on actual changes in road safety.





# **CONTENTS**

| For | rewor | d 1                                               |
|-----|-------|---------------------------------------------------|
| 1.  | Intro | oduction                                          |
| 2.  | ITS o | devices4                                          |
| 2   | 2.1.  | Road and ITS devices locations 4                  |
| 2   | 2.2.  | Investment cost 6                                 |
| 3.  | Traf  | fic volume7                                       |
| 3   | 3.1.  | Traffic volume on E67 Via Baltica route7          |
|     | 3.1.  | 1. Traffic volume on E67 route Estonian sections7 |
|     | 3.1.  | 2. Traffic volume on E67 route Latvian sections   |
| 4.  | Trav  | vel time 10                                       |
| 2   | 4.1.  | Road users' travel costs 10                       |
| 2   | 4.2.  | Travel time and speed data of In-site car trips11 |
| 2   | 4.3.  | Travel time and speed data of In-site car trips13 |
| 5.  | Traf  | fic safety level                                  |
| 5   | 5.1.  | Traffic accidents 16                              |
| ŗ   | 5.2.  | The impact of ITS equipment on accidents 17       |
| 5   | 5.3.  | Accident rates 18                                 |
| 6.  | Envi  | ronmental issues 21                               |
| 7.  | Ana   | lysis results 22                                  |
| 8.  | CON   | ICLUSIONS                                         |



## 1. INTRODUCTION

The study on the effectiveness and on the improvement of the Central Baltic transport project "Smart 67" is divided into two parts – Ex-Ante evaluation was carried out in summer 2016 and Ex-Post evaluation has been carried out in spring/summer 2019 after all new ITS applications are in use and effective.

Suitable analysis methodology for both Ex-Ante and Ex-Post evaluation was presented and agreed before Ex-Ante evaluation in 2016. Information about traffic volume, direction and classification was available from the Client and has been updated during Ex-Post analysis.

For Ex-Post analysis Waze users time and speed data was not available. In order to attain detailed knowledge of the examined subject, the Consultant made two in-site car trips in full length of the project area on road E67 in May and June 2019.

Information about Estonian traffic accidents data is gathered from the Estonian Road Administration and Latvian traffic accidents from the Client. Traffic accident data has been updated during the Ex-Post evaluation.



# 2. ITS DEVICES

## 2.1. Road and ITS devices locations

The list of installed ITS devices and other settings made for existing devices are presented in the Table 2.1.

| Table 2.1. Location and | description of the | installed ITS device on | the E67 Via Baltica route |
|-------------------------|--------------------|-------------------------|---------------------------|
|-------------------------|--------------------|-------------------------|---------------------------|

| No | State | Road<br>no | Km                 | SEC    | Location          | Device                                                        | Installation<br>date | Start of<br>work date |
|----|-------|------------|--------------------|--------|-------------------|---------------------------------------------------------------|----------------------|-----------------------|
| 1  | EST   | 4          | 13.90              | EST_1  | Laagri            | VSL_large                                                     |                      | 09/2018               |
| 2  | EST   | 4          | 13.90              | EST_1  | Laagri            | VSL_large                                                     |                      | 09/2018               |
| 3  | EST   | 4          | 14.25              | EST_1  | Laagri            | VMS info_large                                                |                      | 09/2018               |
| 4  | EST   | 4          | 14.59              | EST_1  | Jälgimäe          | VSL_large                                                     |                      | 09/2018               |
| 5  | EST   | 4          | 14.59              | EST_1  | Jälgimäe          | VSL_large                                                     |                      | 09/2018               |
| 6  | EST   | 4          | 15.03              | EST_1  | Торі              | VSL_large                                                     |                      | 09/2018               |
| 7  | EST   | 4          | 15.03              | EST_1  | Торі              | VSL_large                                                     |                      | 09/2018               |
| 8  | EST   | 4          | 15.34              | EST_1  | Торі              | VWS and VSL_large                                             |                      | 09/2018               |
| 9  | EST   | 4          | 15.34              | EST_1  | Торі              | VWS and VSL_large                                             |                      | 09/2018               |
| 10 | EST   | 4          | 17.85              | EST_1  | Kanama            | VSL_large                                                     |                      | 09/2018               |
| 11 | EST   | 4          | 17.85              | EST_1  | Kanama            | VSL_large                                                     |                      | 09/2018               |
| 12 | EST   | 4          | 18.98              | EST_1  | Kanama            | VSL_large                                                     |                      | 09/2018               |
| 13 | EST   | 4          | 18.98              | EST_1  | Kanama            | VSL_large                                                     |                      | 09/2018               |
| 14 | EST   | 4          | 19.14              | EST_1  | Kanama            | VMS info_large                                                |                      | 09/2018               |
| 15 | EST   | 4          | 19.48              | EST_1  | Kanama            | VMS info_large                                                |                      | 09/2018               |
| 16 | EST   | 4          | 19.56              | EST_1  | Rahula            | VSL_large                                                     |                      | 09/2018               |
| 17 | EST   | 4          | 19.56              | EST_1  | Rahula            | VSL_large                                                     |                      | 09/2018               |
| 18 | EST   | 4          | 20.00              | EST_1  | Rahula            | VWS and VSL_large                                             |                      | 09/2018               |
| 19 | EST   | 4          | 20.00              | EST_1  | Rahula            | VWS and VSL_large                                             |                      | 09/2018               |
| 20 | EST   | 4          | 23.04              | EST_1  | Jõgisoo           | VSL_large                                                     |                      | 09/2018               |
| 21 | EST   | 4          | 23.39              | EST_1  | Jõgisoo           | VSL_large                                                     |                      | 09/2018               |
| 22 | EST   | 4          | 23.39              | EST_1  | Jõgisoo           | VSL_large                                                     |                      | 09/2018               |
| 23 | EST   | 4          | 24.26              | EST_1  | Jõgisoo           | VSL_large                                                     |                      | 09/2018               |
| 24 | EST   | 4          | 24.26              | EST_1  | Jõgisoo           | VSL_large                                                     |                      | 09/2018               |
| 25 | EST   | 4          | 24.55              | EST_1  | Jõgisoo           | VSL_large                                                     |                      | 09/2018               |
| 26 | EST   | 4          | 27.02              | EST_1  | Ääsmäe            | VWS and VSL_large                                             |                      | 09/2018               |
| 27 | EST   | 4          | 27.02              | EST_1  | Ääsmäe            | VWS and VSL_large                                             |                      | 09/2018               |
| 28 | EST   | 4          | 27.02              | EST_1  | Ääsmäe            | VWS and VSL_small                                             |                      | 09/2018               |
| 29 | EST   | 4          | 28.43              | EST_2  | Ääsmäe            | VWS and VSL_small                                             |                      | 09/2018               |
| 30 | EST   | 4          | 64.06              | EST_2  | Märjamaa          | VMS info_small                                                |                      | 09/2018               |
| 31 | EST   | 4          | 64.10              | EST_2  | Märjamaa          | VMS info_small                                                |                      | 09/2018               |
| 32 | EST   | 4          | 123.88             | EST_5  | Sauga             | VMS info_small                                                |                      | 12/2018               |
| 33 | EST   | 4          | 125.20 –<br>133.00 | EST_5  | Pärnu city bypass | Readjustment of existing traffic<br>lights to adaptive regime |                      | 12/2018               |
| 34 | EST   | 4          | 130.45             | EST_5  | Papiniidu sild    | VWS and VSL_small                                             |                      | 12/2018               |
| 35 | EST   | 4          | 130.45             | EST_5  | Papiniidu sild    | VWS and VSL_small                                             |                      | 12/2018               |
| 36 | EST   | 4          | 131.00             | EST_5  | Papiniidu sild    | VWS and VSL_small                                             |                      | 12/2018               |
| 37 | EST   | 4          | 131.00             | EST_5  | Papiniidu sild    | VWS and VSL_small                                             |                      | 12/2018               |
| 38 | EST   | 4          | 139.88             | EST_5  | Raeküla           | VMS info_small                                                |                      | 12/2018               |
| 39 | EST   | 4          | 191.79             | EST_6  | Ikla              | VMS info_small                                                |                      | 12/2018               |
| 40 | LAT   | A1         | 4.03               | LAT_14 | Baltezers         | Readjustment of existing traffic lights to adaptive regime    | 28.09.2018           | 28.09.2018            |



| No | State | Road | Km             | SEC    | Location Device                   |                                                                                  | Installation | Start of   |
|----|-------|------|----------------|--------|-----------------------------------|----------------------------------------------------------------------------------|--------------|------------|
|    |       | no   |                |        |                                   |                                                                                  | date         | work date  |
| 41 | LAT   | A1   | 10.4-<br>12.35 | LAT_13 | Ādaži                             | New RWS, Fixed matrix type<br>alarming VMS, Fixed matrix type<br>speed limit VMS | 20.09.2018   | 27.11.2018 |
| 42 | LAT   | A1   | 13.5           | LAT_13 | Gaujas tilts                      | Incident monitoring                                                              | 13.09.2018   | 13.09.2018 |
| 43 | LAT   | A1   | 21.7           | LAT_12 | Lilaste                           | RWS improvement, Fixed matrix type alarming VMS                                  | 11.10.2018   | 27.11.2018 |
| 44 | LAT   | A1   | 39.2           | LAT_12 | Skulte                            | RWS improvement, Fixed matrix type alarming VMS                                  | 4.10.2018    | 27.11.2018 |
| 45 | LAT   | A1   | 45.6           | LAT_12 | Dunte                             | RWS improvement, Fixed matrix type alarming VMS                                  | 11.09.2018   | 27.11.2018 |
| 46 | LAT   | A1   | 57.55          | LAT_11 | Tūja                              | New RWS, Freely programmed<br>VMS, Fixed matrix type alarming<br>VMS             | 02.10.2018   | 27.11.2018 |
| 47 | LAT   | A1   | 72.3           | LAT_11 | Vitrupe                           | RWS improvement, Fixed matrix type alarming VMS                                  | 13.09.2018   | 27.11.2018 |
| 48 | LAT   | A1   | 97.8           | LAT_9  | Ainaži                            | New RWS, Fixed matrix type<br>alarming VMS                                       | 18.09.2018   | 27.11.2018 |
| 49 | LAT   | A4   | 2.88           | LAT_15 | A4/Upesciema iela (Berģi)         | Readjustment of existing traffic lights to adaptive regime                       | 28.09.2018   | 28.09.2018 |
| 50 | LAT   | A4   | 4.86           | LAT_15 | P2 (Juglas papīrfabrika)/A4       | Readjustment of existing traffic lights to adaptive regime                       | 25.09.2018   | 28.09.2018 |
| 51 | LAT   | A4   | 7.6            | LAT_16 | Mucenieki                         | New RWS, Fixed matrix type<br>alarming VMS                                       | 08.10.2018   | 27.11.2018 |
| 52 | LAT   | A4   | 9.35           | LAT_16 | A4/P4 (Ērgļu ceļš)                | Readjustment of existing traffic lights to adaptive regime                       | 27.09.2018   | 28.09.2018 |
| 53 | LAT   | A4   | 14.29          | LAT_17 | A4/P5 (Ogres ceļš)                | Readjustment of existing traffic lights to adaptive regime                       | 18.09.2018   | 18.09.2018 |
| 54 | LAT   | A4   | 14.29          | LAT_17 | A4/P5 (Ogres ceļš)                | Incident monitoring                                                              | 13.09.2018   | 13.09.2018 |
| 55 | LAT   | A6   | 19.13          | LAT_18 | A6/Rīgas iela (Salaspils)         | Readjustment of existing traffic lights to adaptive regime                       | 15.10.2018   | 15.10.2018 |
| 56 | LAT   | A6   | 18.85          | LAT_18 | A6/Enerģētiķu iela<br>(Salaspils) | Readjustment of existing traffic lights to adaptive regime                       | 15.10.2018   | 15.10.2018 |
| 57 | LAT   | A7   | 19.53          | LAT_22 | Ķekava                            | RWS improvement, Fixed matrix type alarming VMS                                  | 24.09.2018   | 27.11.2018 |
| 58 | LAT   | A7   | 32.9           | LAT_22 | Bērziņi                           | RWS improvement, Fixed matrix type alarming VMS                                  | 25.09.2018   | 27.11.2018 |
| 59 | LAT   | A7   | 43.83          | LAT_22 | A7/Skolas iela (lecava)           | Readjustment of existing traffic lights to adaptive regime                       | 15.10.2018   | 15.10.2018 |
| 60 | LAT   | A7   | 44.09          | LAT_22 | A7/Ed.Virzas iela (lecava)        | Readjustment of existing traffic lights to adaptive regime                       | 15.10.2018   | 15.10.2018 |
| 61 | LAT   | A7   | 52.9           | LAT_23 | Zariņi                            | RWS improvement, Fixed matrix type alarming VMS                                  | 26.09.2018   | 27.11.2018 |
| 62 | LAT   | A7   | 71.4           | LAT_25 | Ceraukste                         | New RWS, Fixed matrix type<br>alarming VMS                                       | 10.10.2018   | 27.11.2018 |
| 63 | LAT   | A7   | 82.5           | LAT_25 | Grenctāle                         | RWS improvement, Fixed matrix type alarming VMS                                  | 27.09.2018   | 27.11.2018 |



### 2.2. Investment cost

Important part of the analysis is investment cost of the installed ITS devices, including installation, maintenance and operating costs. On the E67 Via Baltica route installed ITS device costs are presented in Table 2.2.

| No                               | State | Road<br>no | SEC    | SEC length,<br>km | Investment<br>cost, no VAT,<br>EUR | Investment<br>cost, incl. VAT,<br>EUR | Investment<br>cost, no VAT,<br>EUR/km | Investment<br>cost, incl. VAT,<br>EUR/km |
|----------------------------------|-------|------------|--------|-------------------|------------------------------------|---------------------------------------|---------------------------------------|------------------------------------------|
| 1                                | EST   | 4          | EST_1  | 14.132            | 317 358                            | 380 830                               | 22 457                                | 26 948                                   |
| 2                                | EST   | 4          | EST_2  | 36.994            | 63 568                             | 76 282                                | 1 718                                 | 2 062                                    |
| 3                                | EST   | 4          | EST_5  | 18.733            | 176 660                            | 211 992                               | 9 430                                 | 11 316                                   |
| 4                                | EST   | 4          | EST_6  | 50.401            | 22 643                             | 27 172                                | 449                                   | 539                                      |
| 5                                | LAT   | A1         | LAT_9  | 11.837            | 50 000                             | 60 000                                | 4 224                                 | 5 069                                    |
| 6                                | LAT   | A1         | LAT_11 | 30.629            | 119 167                            | 143 000                               | 3 891                                 | 4 669                                    |
| 7                                | LAT   | A1         | LAT_12 | 35.771            | 130 000                            | 156 000                               | 3 634                                 | 4 361                                    |
| 8                                | LAT   | A1         | LAT_13 | 14.36             | 97 500                             | 117 000                               | 6 790                                 | 8 148                                    |
| 9                                | LAT   | A1         | LAT_14 | 6.94              | 15 000                             | 18 000                                | 2 161                                 | 2 594                                    |
| 10                               | LAT   | A4         | LAT_15 | 4.875             | 35 833                             | 43 000                                | 7 350                                 | 8 821                                    |
| 11                               | LAT   | A4         | LAT_16 | 4.48              | 74 167                             | 89 000                                | 16 555                                | 19 866                                   |
| 12                               | LAT   | A4         | LAT_17 | 11.095            | 11 667                             | 14 000                                | 1 052                                 | 1 262                                    |
| 13                               | LAT   | A6         | LAT_18 | 5.587             | 16 667                             | 20 000                                | 2 983                                 | 3 580                                    |
| 14                               | LAT   | A7         | LAT_22 | 25.173            | 106 667                            | 128 000                               | 4 237                                 | 5 085                                    |
| 15                               | LAT   | A7         | LAT_23 | 20.955            | 41 667                             | 50 000                                | 1 988                                 | 2 386                                    |
| 16                               | LAT   | A7         | LAT_25 | 16.494            | 91 667                             | 110 000                               | 5 558                                 | 6 669                                    |
|                                  | 1     | OTAL       |        | 308.456           | 1 370 229                          | 1 644 275                             | 4 442                                 | 5 331                                    |
| Annual maintenance costs,<br>EUR |       |            | 34 256 | 41 107            | 111                                | 133                                   |                                       |                                          |

Table 2.2. Investment costs of the installed ITS device on the E67 Via Baltica route

Annual maintenance and operating costs of the ITS devices installed on the E67 Via Baltica route are estimated to be approximately 2.5% of the total purchase and installation cost.



## 3. TRAFFIC VOLUME

#### 3.1. Traffic volume on E67 Via Baltica route

#### 3.1.1. Traffic volume on E67 route Estonian sections

The average change in traffic volume over the last decade on the E67 Via Baltica route's Estonian section (road no 4 Tallinn-Pärnu-Ikla) can be found on Charts 3.1 and 3.2. Traffic volume has been continuing to increase also during 2016-2018. The volume of articulated trucks traffic has increased over 85% compared to the year 2005.

Abbreviations shown on the chart:

.

- AADT annual average daily traffic;
- SAPA light vehicles: passenger cars and vans (vehicle length < 6 m);
  - VAAB –buses, light and medium trucks (vehicle length 6-12 m);



AR – heavy trucks, articulated trucks (vehicle length > 12 m).

Chart 3.1. Traffic volume trend on E67 Via Baltica Estonian sections 2005-2018



Chart 3.2. Annual average daily traffic and trucks volume trends 2005-2018 on E67 Via Baltica Estonian sections



| Road | Start | End   | Length, | E67     | т     | raffic volum | e 2018, veh/ | day  | Traffic vol<br>2018/ | ume change<br>2015, % |
|------|-------|-------|---------|---------|-------|--------------|--------------|------|----------------------|-----------------------|
| no   | km    | km    | km      | section | AADT  | SAPA         | VAAB         | AR   | AADT                 | AR                    |
| 4    | 0.0   | 13.0  | 13.0    | EST_0   |       | Tallinn c    | ity section  |      |                      |                       |
| 4    | 13.0  | 13.7  | 0.6     | EST_1   | 32723 | 31228        | 939          | 556  | 4%                   | -16%                  |
| 4    | 13.7  | 14.8  | 1.1     | EST_1   | 29450 | 27893        | 892          | 665  | 8%                   | 11%                   |
| 4    | 14.8  | 18.3  | 3.5     | EST_1   | 21078 | 20196        | 506          | 376  | 5%                   | -9%                   |
| 4    | 18.3  | 27.6  | 9.3     | EST_1   | 16705 | 14480        | 542          | 1683 | 10%                  | 9%                    |
| 4    | 27.6  | 39.2  | 11.6    | EST_2   | 8911  | 7251         | 280          | 1380 | 15%                  | 20%                   |
| 4    | 39.2  | 50.1  | 10.8    | EST_2   | 8599  | 6903         | 275          | 1421 | 14%                  | 32%                   |
| 4    | 50.1  | 64.2  | 14.1    | EST_2   | 8423  | 6574         | 326          | 1523 | 14%                  | 13%                   |
| 4    | 64.2  | 68.5  | 4.3     | EST_3   | 8143  | 6430         | 272          | 1441 | 25%                  | 7%                    |
| 4    | 68.5  | 82.6  | 14.1    | EST_3   | 7290  | 5460         | 235          | 1595 | 12%                  | 19%                   |
| 4    | 82.6  | 89.6  | 7.0     | EST_3   | 8103  | 6449         | 247          | 1407 | 33%                  | 16%                   |
| 4    | 89.6  | 100.7 | 11.1    | EST_3   | 8299  | 6572         | 289          | 1438 | 17%                  | 13%                   |
| 4    | 100.7 | 102.7 | 2.0     | EST_3   | 8273  | 6433         | 263          | 1577 | 22%                  | 27%                   |
| 4    | 102.7 | 111.4 | 8.7     | EST_4   | 8897  | 6855         | 381          | 1661 | 15%                  | 14%                   |
| 4    | 111.4 | 120.7 | 9.3     | EST_4   | 10139 | 8342         | 337          | 1460 | 24%                  | 11%                   |
| 4    | 120.7 | 122.7 | 2.0     | EST_4   | 9747  | 7735         | 364          | 1648 | 12%                  | 28%                   |
| 4    | 122.7 | 125.2 | 2.5     | EST_5   | 12969 | 10741        | 511          | 1717 | 11%                  | 15%                   |
| 4    | 125.2 | 130.9 | 5.7     | EST_5   | 13764 | 11574        | 486          | 1704 | 27%                  | 0%                    |
| 4    | 130.9 | 133.4 | 2.5     | EST_5   | 11026 | 9099         | 210          | 1717 | 32%                  | 15%                   |
| 4    | 133.4 | 141.4 | 8.0     | EST_5   | 10828 | 8592         | 371          | 1865 | 18%                  | 17%                   |
| 4    | 141.4 | 152.4 | 11.0    | EST_6   | 5666  | 3850         | 244          | 1572 | 29%                  | 18%                   |
| 4    | 152.4 | 168.3 | 15.8    | EST_6   | 4653  | 3109         | 193          | 1351 | 17%                  | 7%                    |
| 4    | 168.3 | 191.8 | 23.5    | EST_6   | 4591  | 2832         | 177          | 1582 | 43%                  | 21%                   |
| 4    | 191.8 | 192.3 | 0.5     | EST 7   |       | Ikla state   | border area  |      |                      |                       |

Table 3.1. Annual average daily traffic 2018 in E67 Via Baltica route Estonian sections

#### 3.1.2. Traffic volume on E67 route Latvian sections

The change in average traffic volume on Latvia's E67 route sections over the last five years is shown on Charts 3.3 and 3.4. The traffic volume has increased steadily in Latvia, and the proportion of heavy trucks continues to rise. AADT data for the year 2019 is preliminary.



Chart 3.4. Traffic volume trend on E67 Via Baltica Latvian sections 2011-2015





*Chart 3.5. Annual average daily traffic and trucks volume trend 2011-2018 on E67 Via Baltica Latvian sections* 

|         |          |        |            |             | Traffic volume 2018, veh/day |              | Change 2018/2015, % |                 |
|---------|----------|--------|------------|-------------|------------------------------|--------------|---------------------|-----------------|
| Road no | Start km | End km | Length, km | E67 section | AADT                         | Heavy trucks | AADT                | Heavy<br>trucks |
|         | 83.9     | 101.7  | 17.9       | LAT_9-11    | 4573                         | 1966         | 2%                  | -2%             |
|         | 57.1     | 83.9   | 26.8       | LAT_11      | 5555                         | 2444         | 26%                 | 35%             |
|         | 40.4     | 57.1   | 16.7       | LAT_12      | 6670                         | 2268         | 15%                 | 18%             |
|         | 31.6     | 40.4   | 8.8        | LAT_12      | 8097                         | 2348         | 17%                 | 17%             |
| AI      | 21.3     | 31.6   | 10.3       | LAT_12      | 9404                         | 2351         | 13%                 | 28%             |
|         | 13       | 21.3   | 8.3        | LAT_13      | 13035                        | 2607         | 5%                  | 11%             |
|         | 6.9      | 13     | 6.1        | LAT_13      | 14802                        | 2812         | 15%                 | 55%             |
|         | 0.0      | 6.9    | 6.9        | LAT_14      | 26856                        | 3760         | 15%                 | -5%             |
|         | 0.0      | 4.9    | 4.9        | LAT_15      | 15475                        | 4075         | 11%                 | 17%             |
|         | 4.9      | 9.4    | 4.5        | LAT_16      | 9941                         | 2724         | 12%                 | 18%             |
| A4      | 9.4      | 14.3   | 4.9        | LAT_17      | 9769                         | 2442         | 6%                  | 1%              |
|         | 14.3     | 20.5   | 6.2        | LAT_17      | 8392                         | 2620         | -9%                 | -2%             |
|         | 0.0      | 7.0    | 7.0        | LAT_19-20   | 12625                        | 3219         | 35%                 | 23%             |
| A5      | 7.0      | 8.6    | 1.6        | LAT_19-20   | 12713                        | 3263         | 14%                 | 18%             |
|         | 17.3     | 19.1   | 1.8        | LAT_18      | 25618                        | 3740         | 15%                 | 11%             |
| Ab      | 19.1     | 23     | 3.8        | LAT_18      | 22216                        | 3999         | 12%                 | 12%             |
|         | 19.4     | 44.6   | 25.2       | LAT_22      | 13349                        | 3916         | 12%                 | 10%             |
| A7      | 44.6     | 65.4   | 20.8       | LAT_23      | 10492                        | 3357         | 14%                 | 14%             |
|         | 65.4     | 85.1   | 19.7       | LAT_24-25   | 5950                         | 3076         | 19%                 | 19%             |

Table 3.2. Annual average daily traffic in E67 Via Baltica route Latvian sections



## 4. TRAVEL TIME

For Ex-Post analysis Waze data was not available. Therefore changes on the travel time data before and after installation of ITS devices has been defined mainly based on the In-site car trips (section EST\_5 and LAT\_22) and theoretical calculations (section EST\_1).

## 4.1. Road users' travel costs

For the Ex-Post analysis time values used in the analysis has been updated according to the latest (2018) data. According to the Statistics Estonia, the average gross wage in 2018 was 1310 euros/month. The average gross wage in 2018 in Latvia was 1004 euros/month. Assuming that there are 160 work hours in one month, the hourly price in Estonia is 8,19 euros and in Latvia 6,28 euros (Chart 4.1.).





The updated main parameters of time spent can be found in Table 4.1.

Table 4.1. The average time values used in the analysis (2018 data)

| State The average cost value<br>passenger working tim |             | The average cost value of<br>passenger non-working time | The cost of<br>cargo delay |
|-------------------------------------------------------|-------------|---------------------------------------------------------|----------------------------|
| Estonia                                               | 5,74 euro/h | 1,64 euro/h                                             | 0,30 euro/h                |
| Latvia                                                | 4,40 euro/h | 1,26 euro/h                                             | 0,23 euro/h                |
| Total                                                 | 5,07 euro/h | 1,45 euro/h                                             | 0,27 euro/h                |



## 4.2. Travel time and speed data of In-site car trips

In-site car trips for travel time surveys are made on the Via Baltica route for Ex-Post analysis on the same principle as for Ex-Ante analysis. Individual driving along the route has been done for Ex-Post analysis twice. Traffic rules and normal speed flow has been followed when driving on the route. The data has been registered and saved using GPSLogger<sup>1</sup> mobile phone application. Data collection frequency during the driving times has been high (1-2 seconds). That ensures accurate and precise data for analysing travel time and driving speeds.

In-site car trips were performed once in May and once in June 2019 on the E67 Via Baltica route:

- On the direction Estonia Latvia, direction 1
  - Wednesday, 15.05.2019
  - o Friday, 14.06.2019
- On the direction Latvia Estonia, direction 2
  - o Thursday, 16.05.2019
  - o Sunday, 16.06.2019

Comparison of the average driving speed in the E67 Via Baltica route sections based on the Insite car trips data made on 2016 and 2019 is presented in the Chart 4.2.



Chart 4.2. Comparison of the average driving speed in the E67 Via Baltica route sections based on the In-site car trips data made on 2016 and 2019

It is generally seen that the average speed of passing through the road sections of Estonia has increased, while in Latvia it has dropped on quite a number of road sections. However, it may be assumed that this is not related to the installation of ITS equipment or other work carried out within the framework of the Smart E67 project, but other problems are affecting. Traffic volume has already become too high for existing road cross-sections (especially on Riga bypass

<sup>&</sup>lt;sup>1</sup> http://code.mendhak.com/gpslogger/



road sections) and road capacity has reached there a critical limit that can no longer be improved by small-scale work. Based on the above, in this Ex-Post analysis, the driving speed data of the Riga bypass road sections are the same before and after the installation of the ITS equipment, i.e. the impact of the installation of the ITS equipment and readjustment of the traffic lights on the driving speed of the road users is not taken into account.

The summary of the results on average driving speeds during the In-site car trip during 2016 and 2019 (before and after ITS-device installation) on the Via Baltica route can be found in Table 4.3.

|               | SEC name                                    | State | SEC        | Average sp | Difference |              |
|---------------|---------------------------------------------|-------|------------|------------|------------|--------------|
| SEC_ID        | SEC name                                    | State | (in chart) | 2016       | 2019       | 2019 vs 2016 |
| E67(4)_1_s1   | Laagri-Ääsmäe                               | EST   | EST_1      | 102.8      | 106.9      | 4.0%         |
| E67(4)_1_s2   | Ääsmäe-Märjamaa                             | EST   | EST_2      | 85.4       | 89.6       | 4.9%         |
| E67(4)_1_s3   | Märjamaa-Halinga                            | EST   | EST_3      | 87.5       | 89.7       | 2.6%         |
| E67(4)_1_s4   | Halinga-Jänesselja                          | EST   | EST_4      | 82.8       | 82.6       | -0.2%        |
| E67(4)_1_s5   | Jänesselja-Uulu                             | EST   | EST_5      | 66.4       | 69.4       | 4.5%         |
| E67(4)_1_s6   | Uulu-Ikla (Border area)                     | EST   | EST_6      | 83.4       | 89.1       | 6.9%         |
| EST Total     |                                             |       |            | 84.4       | 88.0       | 4.3%         |
| E67(A1)_2_s9  | Ainaži (Border area)-Salacgriva city border | LAT   | LAT_9      | 79.0       | 86.7       | 9.8%         |
| E67(A1)_2_s11 | Salacgriva city border-Jelgavkrasti (P11)   | LAT   | LAT_11     | 86.6       | 96.1       | 11.0%        |
| E67(A1)_2_s12 | Jelgavkrasti (P11)-Lilaste (V101)           | LAT   | LAT_12     | 93.3       | 97.7       | 4.8%         |
| E67(A1)_2_s13 | Lilaste (V101)-Adaži                        | LAT   | LAT_13     | 83.4       | 85.6       | 2.7%         |
| E67(A1)_2_s14 | Adaži-Ryga bypass (A4)                      | LAT   | LAT_14     | 73.1       | 69.6       | -4.7%        |
| E67(A4)_1_s15 | Ryga bypass (A4)-Amatnieki (P2)             | LAT   | LAT_15     | 68.5       | 59.6       | -12.9%       |
| E67(A4)_1_s16 | Amatnieki (P2)-Ulupij (P4)                  | LAT   | LAT_16     | 71.2       | 69.8       | -2.0%        |
| E67(A4)_1_s17 | Ulupij (P4)-Saulkalne (A6)                  | LAT   | LAT_17     | 72.3       | 69.7       | -3.7%        |
| E67(A6)_2_s18 | Saulkalne (A4)-Salaspils (A5)               | LAT   | LAT_18     | 69.9       | 75.9       | 8.7%         |
| E67(A5)_1_s19 | Salaspils (A6)-Hydropower plant             | LAT   | LAT_19     | 60.2       | 66.3       | 10.1%        |
| E67(A5)_1_s21 | Hydropower plant-Kekava (A7)                | LAT   | LAT_21     | 71.9       | 69.8       | -2.9%        |
| E67(A7)_1_s22 | Kekava (A5)-lecava (P93)                    | LAT   | LAT_22     | 79.7       | 81.8       | 2.7%         |
| E67(A7)_1_s23 | lecava (P93)-Bauska City border             | LAT   | LAT_23     | 84.5       | 79.9       | -5.5%        |
| E67(A7)_1_s25 | Bauska City border-LV border area           | LAT   | LAT_25     | 72.9       | 86.7       | 18.9%        |
| LAT Total     |                                             |       |            | 81.5       | 85.1       | 4.3%         |
| Grand Total   |                                             |       |            | 82.9       | 86.4       | 4.3%         |

Table 4.3. Average driving speed in the E67 Via Baltica route during 2016 and 2019 based on the In-site car trips data



### 4.3. Travel time and speed data of In-site car trips

During this project, the most important changes affecting the driving time of road users were made on three sections (EST\_1, EST\_5 and LAT\_22). The impact of the changes on road users is discussed below, and the calculated impact on each road section is discussed separately.

#### Section EST\_1 Laagri-Ääsmäe

During the project to the section EST\_1 Laagri-Ääsmäe following ITS devices have been installed:

- VMS info (large) 3 pcs
- VSL (large) 18 pcs
- VWS and VSL (large) 6 pcs
- VWS and VSL (small) 1 pcs

Installed devices have been in active use since December 1, 2018 and they have been used to inform road users of the various problems (accidents, weather conditions, etc.) on the road section. In case of favourable weather conditions, the general speed limit (90 km/h) was also increased (110 km/h) during the winter period.

Summary of set speed limits during the period from December 1, 2018 till March 31, 2019 is following:

- Raised speed limit to 110 km/h in total on 84 days (app. 70% of the period);
- Normal wintertime speed limit 90 km/h in total 23 days (app. 20% of the period);
- Lowered speed limit to 80 km/h due to the weather etc. conditions in total 13 days (app. 10 % of the period).

Considering the actual (2018 data) traffic volume, distribution to the vehicle classes the length of the section and distribution of the actual speed limits following conclusions can be made:

- Before ITS device installation
  - The 90 km/h speed limit has been usually (average for 20 years) in force 190 days (52% of the year);
  - The 110 km/h speed limit has been usually in force 175 days (48% of the year);
  - Average calculated driving speed during winter time 90 km/h;
  - Average calculated driving speed during summer time 108,2 km/h;
  - Annual average driving speed is therefore calculated 98,7 km/h.
- After ITS device installation
  - Average calculated driving speed during winter time 101,7 km/h;
  - Average calculated driving speed during summer time 108,2 km/h;
  - Annual average driving speed is therefore calculated 104,8 km/h.



Considering the increased driving speeds, it is expected that the average time savings per vehicle will be 0,83 minutes. Based on the traffic volume of the EST\_1 road section, the total annual time savings would be for road users 98 600 hours.

#### Section EST\_5 Jänesselja-Uulu

During the project to the section EST\_5 Jänesselja-Uulu following ITS devices have been installed:

- VMS info (small) 2 pcs
- VWS and VSL (small) 4 pcs

In addition to the installed ITS devices readjustment of existing traffic lights have been made for Pärnu bypass section (km 125,0-133,0). The traffic signal setup has had a great impact and passing of the road section has become much smoother than before, as seen from the In-site car trip data in Chart 4.3.



Chart 4.3. Comparison of the average driving speed in the E67 Via Baltica route Pärnu bypass before and after readjustment of existing traffic lights to adaptive regime

Average driving speed on section EST\_5 has been raised from 66,4 km/h to 69,4 km/h. This means that the average passage time for the road section is reduced in total by 0,73 minutes. Based on the traffic volume of the EST\_5 road section, the total annual time saving would be for road users 53 400 hours.



#### Section LAT\_22 Kekava-lecava

During the project to the section LAT\_22 Kekava-lecava following ITS devices have been installed and configured:

- RWS improvement;
- Fixed matrix type alarming VMS;
- Readjustment of existing traffic lights to adaptive regime in lecava city.

Based on the In-site car trip data the average driving speed on LAT\_22 section has been after ITS device installation increased from 79,7 km/h to 81,8 km/h. Considering the length of the road section (25,173 km), the driving time of one vehicle has been reduced by 0,49 minutes (0,008 hours). Based on the traffic volume of the LAT\_22 road section (AADT=13349 veh/day), the total annual time saving would be for road users 40 040 hours.

#### **Summary**

As a result of the installation and configuration of the ITS equipment on these two sections, the following can be stated:

- Due to the impact of ITS equipment installation on traffic conditions (on sections EST\_1, EST\_5 and LAT\_22), the average driving time on Via Baltica route sections has been reduced in total by 2,05 minutes/vehicle (0,034 hours/vehicle);
- According to the In-site car trips the average total driving time on Via Baltica route sections in 2016 (before ITS device installations) was 4,58 hours. Taking into account the travel time savings achieved in sections EST\_1, EST\_5 and LAT\_22 (0,014 hour/vehicle, 0,012 hour/vehicle and 0,008 hour/vehicle respectively) after ITS device installations average total travel time has been decreased on Via Baltica route sections by 0,747%;
- Based on the traffic volume and mileage, the total annual travel time savings on route are 192 000 hours/year, which, according to the expected increase in traffic volume, is likely to increase during the coming years.



# 5. TRAFFIC SAFETY LEVEL

#### 5.1. Traffic accidents

Traffic accident data on Via Baltica route has been updated for Ex-Post analysis. Updated data for years 2016-2018 is delivered by the Estonian and Latvian road authorities. Concerning Estonian data there is only fatalities and injury accidents included (damage only accidents are excluded from the analysis).

A summary on the traffic accidents as well as the number of fatalities and injuries that took place on the E67 Via Baltica route over the last years can be seen in Table 5.1.

| State    | Section | Section name                                  | Fatalities | Injuries | Accidents |
|----------|---------|-----------------------------------------------|------------|----------|-----------|
| EST      | EST_1   | Laagri - Ääsmäe                               | 5          | 81       | 145       |
| EST      | EST_2   | Ääsmäe - Märjamaa                             | 8          | 122      | 115       |
| EST      | EST_3   | Märjamaa - Halinga                            | 22         | 130      | 129       |
| EST      | EST_4   | Halinga - Jänesselja                          | 9          | 120      | 124       |
| EST      | EST_5   | Jänesselja - Uulu                             | 11         | 60       | 84        |
| EST      | EST_6   | Uulu - Ikla (Border area)                     | 8          | 95       | 130       |
| EST Tota | 1*      |                                               | 63         | 608      | 727       |
| LAT      | LAT_9   | Ainazi (Border area) - Salacgriva City border | 11         | 197      | 514       |
| LAT      | LAT_11  | Salacgriva City border - Jelgavkrasti (P11)   | 17         | 125      | 344       |
| LAT      | LAT_12  | Jelgavkrasti (P11) - Lilaste (V101)           | 10         | 114      | 299       |
| LAT      | LAT_13  | Lilaste (V101) - Adazi                        | 12         | 109      | 239       |
| LAT      | LAT_14  | Adazi - Ryga bypass (A4)                      | 11         | 128      | 259       |
| LAT      | LAT_15  | Ryga bypass (A4) - Amatnieki (P2)             | 10         | 112      | 228       |
| LAT      | LAT_16  | Amatnieki (P2) - Ulupji (P4)                  | 15         | 115      | 203       |
| LAT      | LAT_17  | Ulupji (P4) - Saulkalne (A6)                  | 10         | 118      | 219       |
| LAT      | LAT_18  | Saulkalne (A4) - Salaspils (A5)               | 5          | 113      | 212       |
| LAT      | LAT_19  | Salaspils (A6) - Hydropower plant             | 6          | 119      | 227       |
| LAT      | LAT_21  | Hydropower plant - Kekava (A7)                | 10         | 113      | 205       |
| LAT      | LAT_22  | Kekava (A5) - Iecava (P93)                    | 11         | 197      | 514       |
| LAT      | LAT_23  | lecava (P93) - Bauska City border             | 17         | 125      | 344       |
| LAT      | LAT_25  | Bauska City border - LV border area           | 10         | 114      | 299       |
| LAT Tota | al*     |                                               | 117        | 1363     | 2949      |

Table 5.1. Summary of traffic accident data on E67 Via Baltica route sections

\* REMARK – Estonian traffic accident data is for period 2006-2018 and Latvian for period 2008-2018

Charts 5.1 and 5.2 demonstrate the changes of the annual number of accidents, injuries and fatalities over the last years (13 years in Estonia, 11 years in Latvia).

There has no significant improvement over last three years (2016-2018) comparing to previous three-year cycle (2013-2015). However it should be mentioned, that in Latvia the number of fatalities was reduced within years 2016-2017.





Chart 5.1. The number of fatalities, injuries and accidents on the E67 Via Baltica route Estonia sections



Chart 5.2. The number of fatalities, injuries and accidents on the E67 Via Baltica route Latvia sections

#### 5.2. The impact of ITS equipment on accidents

In the current study accident rates after the ITS device installation have been estimated based on the international experiences and studies and experts estimates.

The main purpose of using variable message signs (VMS) is to alert road users to various extraordinary dangerous situations and at the same time to provide road users with feedback on their behavior.

The impact of variable message signs (VMS) on road accidents is addressed in various international studies. A detailed summary of these various studies is provided in the work<sup>2</sup> published in 2009 and in Table 5.2 is presented a summary of this.

<sup>&</sup>lt;sup>2</sup> Elvik, R., Hoye, A., Vaa, T., Sorensen, M. The Handbook of road safety measures, second edition 2009



|                                        | Assident sousitu                    | Types of accident                          | Percentage change in the<br>number of accidents |                            |  |
|----------------------------------------|-------------------------------------|--------------------------------------------|-------------------------------------------------|----------------------------|--|
| Type of vivis-sign                     | Accident seventy                    | affected                                   | Best estimate                                   | 95% confidence<br>interval |  |
| Accident warning signs                 | Injury accidents                    | Accidents on<br>motorways                  | -44%                                            | -59%22%                    |  |
| Fog (weather) warning signs            | Unspecified severity                | Accidents in fog/bad<br>weather condition  | -84%                                            | -93%63%                    |  |
| Weather-controlled speed limits        | Injury accidents                    | Accidents in winter<br>Accidents in summer | -13%<br>-2%                                     | -                          |  |
| Queue warnings on motorways            | Injury accidents<br>Property damage | Rear end collisions<br>Rear end collisions | -16%<br>+16%                                    | -26%4%<br>+1%+34%          |  |
| Collective feedback<br>signs for speed | Unspecified severity                | All accidents                              | -46%                                            | -62%24%                    |  |
| Individual feedback<br>signs for speed | Injury accidents                    | All accidents                              | -41%                                            | -78%+59%                   |  |

| Tabel 5.2.  | Effects of | f variable | messaae | sians  | (VMS) ( | on the | number | of  | accidents  |
|-------------|------------|------------|---------|--------|---------|--------|--------|-----|------------|
| 10001 0.2.1 |            | variable   | message | Jigiij | (****3) | on the | number | vj. | acciaciits |

However, the following conditions must be considered when interpreting the results of the analysis:

- These studies are already quite old to date, and intermediate technical progress has reduced the cost of VMS signs on the one hand, and on the other hand has expanded the use of these signs;
- The impact of installed ITS equipment on road safety is theoretical in this analysis and is not based on real data, as ITS equipment installed on Via Baltica route sections has been in operation for a very short time (approx. only 0.5 years).

The authors of this study are proposing a long-term monitoring of the evolution of road safety on Via Baltica route sections in order to gain a better understanding and more comprehensive overview of the impact of ITS equipment on road users, their behaviour and on traffic safety.

#### 5.3. Accident rates

The impact of installed ITS equipment on traffic accidents and traffic safety has been taken into account only for those Via Baltica route sections where they are actually installed within the Smart E67 project. The expected reduce of the number of traffic accidents on each particular route section depends on the number of ITS devices installed and their expected impact on road safety. Based on the number of ITS devices installed during the Smart E67 project on the Via Baltica route sections, the greatest positive impact to road safety level is expected in section EST\_1, where 28 different ITS devices are installed. There are quite a few road sections on Via Baltica route where no changes are expected in road safety, as these sections do not have ITS equipment installed within the project.

The surveyed E67 Via Baltica route sections' accident rate values (number per 100 million vehkm) used in the analysis before and after ITS device installations are presented in Table 5.2 and in Charts 5.3, 5.4 and 5.5.



|       |                                  |                                               | Accident rate in number pe |           |           |                         | er 100 million veh-km |           |  |  |
|-------|----------------------------------|-----------------------------------------------|----------------------------|-----------|-----------|-------------------------|-----------------------|-----------|--|--|
| State | Section                          | Section name                                  | Before I                   | rs instal | lations   | After ITS installations |                       |           |  |  |
|       |                                  |                                               | Fatalities                 | Injuries  | Accidents | Fatalities              | Injuries              | Accidents |  |  |
| EST   | EST_1                            | Laagri - Ääsmäe                               | 0.38                       | 6.16      | 11.02     | 0.27                    | 4.93                  | 9.37      |  |  |
| EST   | EST_2                            | Ääsmäe - Märjamaa                             | 0.53                       | 8.05      | 7.59      | 0.50                    | 7.65                  | 7.40      |  |  |
| EST   | EST_3                            | Märjamaa - Halinga                            | 1.53                       | 9.02      | 8.96      | 1.53                    | 9.02                  | 8.96      |  |  |
| EST   | EST_4                            | Halinga - Jänesselja                          | 1.00                       | 13.27     | 13.71     | 1.00                    | 13.27                 | 13.71     |  |  |
| EST   | EST_5                            | Jänesselja - Uulu                             | 1.04                       | 5.65      | 7.90      | 0.98                    | 5.36                  | 7.71      |  |  |
| EST   | EST_6                            | Uulu - Ikla (Border area)                     | 0.69                       | 8.20      | 11.22     | 0.68                    | 8.12                  | 11.11     |  |  |
| EST T | OTAL                             |                                               | 1.11                       | 10.72     | 12.82     | 1.06                    | 10.35                 | 12.53     |  |  |
| LAT   | LAT_9                            | Ainazi (Border area) - Salacgriva City border | 1.38                       | 10.12     | 35.43     | 1.37                    | 10.02                 | 35.07     |  |  |
| LAT   | LAT_11                           | Salacgriva City border - Jelgavkrasti (P11)   | 1.46                       | 14.78     | 31.33     | 1.45                    | 14.64                 | 31.01     |  |  |
| LAT   | LAT_12                           | Jelgavkrasti (P11) - Lilaste (V101)           | 1.78                       | 16.41     | 36.66     | 1.77                    | 16.25                 | 36.29     |  |  |
| LAT   | LAT_13                           | Lilaste (V101) - Adazi                        | 0.88                       | 20.89     | 31.84     | 0.87                    | 20.68                 | 31.52     |  |  |
| LAT   | LAT_14                           | Adazi - Ryga bypass (A4)                      | 1.47                       | 17.11     | 37.55     | 1.47                    | 17.11                 | 37.55     |  |  |
| LAT   | LAT_15                           | Ryga bypass (A4) - Amatnieki (P2)             | 3.63                       | 50.84     | 79.90     | 3.63                    | 50.84                 | 79.90     |  |  |
| LAT   | LAT_16                           | Amatnieki (P2) - Ulupji (P4)                  | 1.68                       | 28.52     | 52.57     | 1.66                    | 28.24                 | 52.04     |  |  |
| LAT   | LAT_17                           | Ulupji (P4) - Saulkalne (A6)                  | 1.25                       | 22.70     | 45.89     | 1.25                    | 22.70                 | 45.89     |  |  |
| LAT   | LAT_18                           | Saulkalne (A4) - Salaspils (A5)               | 0.38                       | 3.64      | 24.88     | 0.38                    | 3.64                  | 24.88     |  |  |
| LAT   | LAT_19                           | Salaspils (A6) - Hydropower plant             | 3.28                       | 66.50     | 203.60    | 3.28                    | 66.50                 | 203.60    |  |  |
| LAT   | LAT_21                           | Hydropower plant - Kekava (A7)                | 0.40                       | 7.92      | 32.46     | 0.40                    | 7.92                  | 32.46     |  |  |
| LAT   | LAT_22                           | Kekava (A5) - Iecava (P93)                    | 1.48                       | 12.38     | 29.80     | 1.47                    | 12.25                 | 29.50     |  |  |
| LAT   | LAT_23                           | lecava (P93) - Bauska City border             | 1.93                       | 13.93     | 23.45     | 1.91                    | 13.79                 | 23.22     |  |  |
| LAT   | LAT_25                           | Bauska City border - LV border area           | 0.76                       | 14.21     | 31.47     | 0.75                    | 14.07                 | 31.16     |  |  |
| LAT T | OTAL 1.67 19.50 42.20 1.66 19.35 |                                               |                            |           | 19.35     | 41.86                   |                       |           |  |  |
| Grand | d Total                          |                                               | 1.53                       | 16.72     | 31.19     | 1.49                    | 16.38                 | 30.72     |  |  |

Table 5.3. Summary of accident rate data on E67 Via Baltica route sections before and after installation of ITS devices



Chart 5.3. The number of fatalities per year per 100 million veh-km on E67 Via Baltica route sections





Chart 5.4. The number of injuries per year per 100 million veh-km on E67 Via Baltica route sections



Chart 5.5. The number of accidents per year per 100 million veh-km on E67 Via Baltica route sections





## 6. ENVIRONMENTAL ISSUES

The amount of emissions and their content is related to the type of vehicle and their driving speed. Higher speed means more emissions and vice versa. Therefore in most cases savings in travel time mean more emissions.

Summary of the differencies of emission quantities (in tonnes and in euros) before and after ITS installations on E67 Via Baltica route sections is presented in Table 6.1.

|                                    |                       |                   | Difference in e<br>device installa               | Difference in                          |                                          |                                         |                                          |                                    |
|------------------------------------|-----------------------|-------------------|--------------------------------------------------|----------------------------------------|------------------------------------------|-----------------------------------------|------------------------------------------|------------------------------------|
| State                              | State Section Section |                   | VOC, volatile<br>organic<br>hydrocarbons<br>(HC) | Nitrous<br>oxide<br>(NO <sub>X</sub> ) | Sulphur<br>dioxide<br>(SO <sub>2</sub> ) | Carbon<br>dioxide<br>(CO <sub>2</sub> ) | Fine<br>particulates<br>(PM10;<br>PM2.5) | emission<br>components,<br>in EUR* |
| EST                                | EST_1                 | Laagri - Ääsmäe   | 20                                               | 67                                     | 0                                        | 5 645                                   | 2                                        | 720 676                            |
| EST                                | EST_5                 | Jänesselja - Uulu | 59                                               | 65                                     | 4                                        | 5 681                                   | 14                                       | 1 492 947                          |
| Grand Total during analysis period |                       | 79                | 132                                              | 4                                      | 11 326                                   | 16                                      | 2 214 193                                |                                    |
| Total per year                     |                       |                   | 8,9                                              | 14,6                                   | 0,5                                      | 1 258,4                                 | 1,7                                      | 246 021                            |

Table 6.1. Summary of emission quantities (in tonnes and in euros) on E67 Via Baltica route sections

\* based on 2015 unit costs

Still, there are several issues that may arise when estimating emissions and gained benefits from the investments. Current models are not yet very accurate at predicting how factors such as changes in driving cycles and congestion impacts will affect overall emissions. There are still many details that are not understood about the relationship between emissions and human health. It is unclear whether the combined effect of several pollutants is worse than the effect of a single pollutant. Other pollutants may only affect human health once their ambient concentration is above a certain threshold.



## 7. ANALYSIS RESULTS

The purpose of the Ex-Poste analysis is to define impact of the installed ITS devices to the E67 Via Baltica route sections. Performance indicators (road user effects, road safety effects and socio-economic and environmental effects) have been defined and included into the model for each analyzed section.

The analytical framework of the analyses is based on the concept of life cycle analysis of the made investments. Investments' (installed ITS devices) life time is estimated to be 10 years what is also analysis period. Impact of the road investments (ITS devices) are determined by comparing the total cost streams for various alternatives (installation of ITS devices) against the base case (current situation without the project or do minimum) alternative.

The starting year for all the different scenarios examined in the analysis is 2018 and the discount rate used is 4.0%<sup>3</sup>. The residual value of the investment at the end of the analysis period is 10%.

The cost-effectiveness criterion is to compare the amount of savings that society receives with the cost of realizing the investments made. Thus, the following conditions must be considered as criteria for a cost-benefit analysis:

- Net Present Value, NPV>0;
- Benefit/Cost Ratio, B/C ratio>1,0;
- Economical Internal Rate of Return, EIRR>4,0%.

In order to evaluate the results of the analysis, ROSEBUD WP5 (2005) proposed to use the scale for estimating the cost/benefit ratio. This scoreboard is designed to facilitate the assessment of the cost-effectiveness of road safety improvement measures. Corresponding limit values for B/C ratio are presented in the Table 7.1.

| Rating         | Benefit/Cost Ratio (B/C-ratio) |
|----------------|--------------------------------|
| Not acceptable | < 1,0                          |
| Acceptable     | 1,03,0                         |
| Very good      | > 3,0                          |

Table 7.1. Benefit/Cost Ratio ratings and corresponding limit values (ROSEBUD WP5, 2005)

The results of the analysis are summarized in Table 7.2. As the results show, installing ITS devices on E67 Via Baltica route turned out to be economically justified (scenario E67 SMART base alternative) with B/C ratio in the level very good (4,2).

To determine the impact of important input parameters a sensitivity analysis was carried out for the project and following scenarios were compared:

<sup>&</sup>lt;sup>3</sup> http://eur-lex.europa.eu/legal-content/ET/TXT/HTML/?uri=CELEX:32014R0480&from=ET



- Scenario 1 expected traffic growth rate is 40% lower;
- Scenario 2 expected benefits from reducing accident rate are 50% lower;
- Scenario 3 Revenues from travel time savings are 50% lower.

As the results show, none of the scenarios analyzed made the project economically negative.

Table 7.2. Summary of emission quantities (in tonnes and in euros) on E67 Via Baltica route sections

|            |                                                                                                        |                                      | Net present value (NPV), million. euro                         |                                                                   |                                                          |                                                                             |                                             |                                                                                           |  |
|------------|--------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------|--|
| No.        | Scenario                                                                                               | Analysis                             | Increase in Road Agency<br>Costs                               |                                                                   | Benefit components                                       |                                                                             |                                             |                                                                                           |  |
|            |                                                                                                        | period                               | Investment<br>to ITS<br>devices                                | Maintenance<br>and operation                                      | VOC                                                      | Travel Time<br>Costs                                                        | Reduction<br>in Accident<br>Costs           | Emissions                                                                                 |  |
| 1          | E67 SMART<br>base<br>alternative                                                                       | 10                                   | 1.27                                                           | 0.29                                                              | -0.19                                                    | 2.63                                                                        | 6.42                                        | -1.99                                                                                     |  |
| 2          | Sensitivity scenario 1                                                                                 | 10                                   | 1.27                                                           | 0.29                                                              | -0.21                                                    | 2.47                                                                        | 6.04                                        | -1.99                                                                                     |  |
| 3          | Sensitivity<br>scenario 2                                                                              | 10                                   | 1.27                                                           | 0.29                                                              | -0.19                                                    | 2.63                                                                        | 3.21                                        | -1.99                                                                                     |  |
| 4          | Sensitivity                                                                                            | 10                                   | 1.27                                                           | 0.29                                                              | -0.19                                                    | 1.31                                                                        | 6.42                                        | -1.99                                                                                     |  |
|            | scenario 5                                                                                             |                                      |                                                                |                                                                   |                                                          | -                                                                           |                                             |                                                                                           |  |
|            | scenario s                                                                                             |                                      |                                                                |                                                                   |                                                          | -                                                                           |                                             |                                                                                           |  |
| No.        | Scenario                                                                                               | Analysis<br>period                   | Total NPV of<br>costs, million<br>euro                         | Total NPV of<br>benefits,<br>million euro                         | Total<br>NPV,<br>million<br>euro                         | Economical<br>Internal Rate<br>of Return<br>EIRR, %                         | Benefit/<br>Cost Ratio                      | Benefit/<br>Cost rating<br>(ROSEBUD<br>WP5, 2005)                                         |  |
| <b>No.</b> | Scenario<br>E67 SMART<br>base<br>alternative                                                           | Analysis<br>period<br>10             | Total NPV of<br>costs, million<br>euro<br>1.56                 | Total NPV of<br>benefits,<br>million euro<br>6.87                 | Total<br>NPV,<br>million<br>euro<br>5.31                 | Economical<br>Internal Rate<br>of Return<br>EIRR, %                         | Benefit/<br>Cost Ratio<br>4.4               | Benefit/<br>Cost rating<br>(ROSEBUD<br>WP5, 2005)<br>very good                            |  |
| No.        | Scenario<br>E67 SMART<br>base<br>alternative<br>Sensitivity<br>scenario 1                              | Analysis<br>period<br>10<br>10       | Total NPV of<br>costs, million<br>euro<br>1.56<br>1.56         | Total NPV of<br>benefits,<br>million euro<br>6.87<br>6.31         | Total<br>NPV,<br>million<br>euro<br>5.31<br>4.75         | Economical<br>Internal Rate<br>of Return<br>EIRR, %<br>57.2<br>54.2         | Benefit/<br>Cost Ratio<br>4.4<br>4.0        | Benefit/<br>Cost rating<br>(ROSEBUD<br>WP5, 2005)<br>very good<br>very good               |  |
| No.        | Scenario<br>E67 SMART<br>base<br>alternative<br>Sensitivity<br>scenario 1<br>Sensitivity<br>scenario 2 | Analysis<br>period<br>10<br>10<br>10 | Total NPV of<br>costs, million<br>euro<br>1.56<br>1.56<br>1.56 | Total NPV of<br>benefits,<br>million euro<br>6.87<br>6.31<br>3.66 | Total<br>NPV,<br>million<br>euro<br>5.31<br>4.75<br>2.10 | Economical<br>Internal Rate<br>of Return<br>EIRR, %<br>57.2<br>54.2<br>27.5 | Benefit/<br>Cost Ratio<br>4.4<br>4.0<br>2.3 | Benefit/<br>Cost rating<br>(ROSEBUD<br>WP5, 2005)<br>very good<br>very good<br>acceptable |  |





# 8. CONCLUSIONS

With SMART E67 project it was expected to gain the decrease of total travel time of passengers and cargos by 0,57% if compared to the current travel time in E67 Via Baltica route sections in Estonia and Latvia. The project was expected to foster safety of passenger and cargo transport and diminish CO2 emissions due to time savings of transport on road. Introduction of ITS on E67 was expected to be feasible option to improve the efficiency of passenger and cargo transport in this corridor besides investment intensive infrastructure improvements.

The results and conclusions of Ex-Post analysis are as follows:

- SMART E67 project is economically feasible, with B/C ratio 4,4, which is very good according to the ROSEBUD WPS scale;
- Average driving time on the Via Baltica route sections has been reduced by 2,05 minutes/vehicle;
- Average total travel time on Via Baltica route sections has been decreased by 0,747%;
- The annual total travel time savings on Via Baltica route sections is 192 000 hours/year.

Given the final results of the Ex-Post analysis, it can be concluded that the Smart E67 project was successful and that its implementation was fully justified.

